Elusive Fullerenes

DOI: 10.1002/anie.200604968

Discovering and Verifying Elusive Fullerene Cage Isomers: Structures of C_2 - p^{11} - $(C_{74}$ - $D_{3h})(CF_3)_{12}$ and C_2 - p^{11} - $(C_{78}$ - $D_{3h}(5))(CF_3)_{12}$ **

Natalia B. Shustova, Brian S. Newell, Susie M. Miller, Oren P. Anderson, Robert D. Bolskar, Konrad Seppelt, Alexey A. Popov, Olga V. Boltalina,* and Steven H. Strauss*

We recently reported the trifluoromethylation of a mixture of sublimable but insoluble and largely unknown fullerenes at $500\,^{\circ}\mathrm{C}$ and the isolation and NMR characterization of single isomers of stable, soluble $C_{2n}(CF_3)_{12}$ derivatives for $C_{2n} = C_{74}$ D_{3h} , C_{76} - $T_d(2)$, C_{78} - $D_{3h}(5)$, C_{80} - $C_{2v}(5)$, and C_{82} - $C_2(3)$.^[1] In each case, a combination of 1D and 2D NMR data and DFT calculations narrowed down the billions of possible isomers to one probable isomer. Among the predicted structures were C_2 - p^{11} - $(C_{74}$ - $D_{3h})(CF_3)_{12}$ and C_2 - p^{11} - $(C_{78}$ - $D_{3h}(5))(CF_3)_{12}$, both with a continuous ribbon of 11 edge-sharing para-C₆(CF₃)₂ hexagons.^[1] We now confirm the proposed structures for both compounds by single-crystal X-ray diffraction. These are the first X-ray structures of any hollow or endohedral derivative of the C_{74} - D_{3h} or C_{78} - $D_{3h}(5)$ cages that 1) do not exhibit "general disorder of all ... cage [C atoms]" (see the description of the crystal structure of La@ $C_{74}(C_6H_3Cl_2)^{[2]}$) or 2) were not refined using a rigid-body DFT-optimized carbon cage (see the refinement of the structures of Ba@(C_{74} - D_{3h})^[3] and $Sc_3N@(C_{78}-D_{3h}(5))^{[4]}$). In addition, the precision of the C_{74} structure permits a meaningful analysis of the C-C distances, C-CF₃ distances, and F-C-C torsion angles.

Several high-quality X-ray structures of fullerene derivatives with two or more CF3 or C2F5 groups have been reported since the first one was published in mid-2005;^[5] most exhibit unprecedented C_1 -symmetry addition patterns.^[6]

[*] N. B. Shustova, B. S. Newell, S. M. Miller, Prof. O. P. Anderson,

Dr. O. V. Boltalina, Prof. S. H. Strauss

Department of Chemistry Colorado State University Fort Collins, CO 80523 (USA)

Fax: (+1) 970-491-5104 E-mail: ovbolt@lamar.colostate.edu

steven.strauss@colostate.de

Dr. R. D. Bolskar TDA Research Inc.

12345 West 52nd Avenue, Wheat Ridge, CO 80033 (USA)

Prof. Dr. K. Seppelt

Institut für Anorganische und Analytische Chemie

Freie Universität Berlin

14195 Berlin (Germany)

Dr. A. A. Popov

Chemistry Department

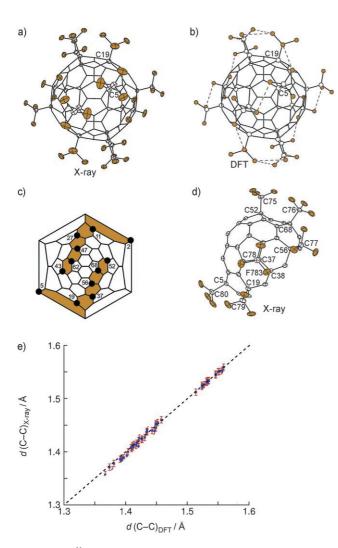
Moscow State University

119992 Moscow (Russia)

[**] This work was supported by the U.S. NIH (R01-EB000703-03 to R.D.B.), the Fonds der Chemischen Industrie (Germany) (to K.S.), and the Civilian Research and Development Foundation (RUC2-2830-MO-06 to A.A.P. and S.H.S.).

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

High-temperature perfluoroalkylation results in the isolation of a small number of the many possible isomers that probably form during the radical addition of multiple CF3 and C2F5 groups. [5,7,8] In addition, it has been shown that trifluoromethylation of a mixture containing Y@C₈₂ and Y₂@C₈₀ facilitated the isolation of purified Y₂@C₈₀ and, at the same time, converted paramagnetic Y@C₈₂ into two stable, soluble, and diamagnetic isomers of Y@C₈₂(CF₃)₅.^[9] The two X-ray structures reported here demonstrate that high-temperature trifluoromethylation can also lead to the discovery or verification of elusive fullerene cages.


Hollow C₇₄ was observed in sublimable fractions of soots in 1993, [10] and its electron affinity (3.28(7) eV) was measured in 1996. [11] There is only one possible isomer for C_{74} that follows the isolated-pentagon rule, C_{74} - D_{3h} . [12] The exohedral derivative C74F2 was observed by Knudsen-cell mass spectrometry in 1997.^[13] Diener and Alford reported the purification of C₇₄ in 1998, [14] and in 2004 we reported the preparation and 19F NMR spectrum of its first isolable derivative, $C_{74}F_{38}$, the $^{19}F\ NMR$ spectrum of which was consistent with D_3 symmetry. This provided the first experimental evidence that hollow C_{74} probably has D_{3h} symmetry. [15] Endohedral C₇₄ compounds have been investigated, and their ¹³C NMR spectra suggest that the M@C₇₄ cage has the D_{3h} structure as well (see references [2] and [3] and references therein).

The X-ray crystal structure of $C_{74}(CF_3)_{12}$ is shown in Figure 1 a. [16] The complete thermal ellipsoid plot, numbering, and packing diagrams are available. [6] The C₇₄(CF₃)₁₂ molecule has crystallographic C_2 symmetry. The C_2 axis is the only remaining symmetry element of the original D_{3h} cage after the 12 CF₃ groups have been added to give a ribbon of 11 C(sp³)- $C(sp^2)$ edge-sharing p- $C_6(CF_2)_2$ hexagons (see Schlegel diagram in Figure 1c). The estimated standard deviations for individual cage C-C distances range from 0.0017 to 0.0020 Å (Table 1). A network of F.-F contacts between hexagonsharing CF₃ groups range in distance from 2.6322(17) to 2.8785(14) Å and give rise to the time-averaged, throughspace Fermi-contact ${}^{7}J_{FF}$ values of 12–15 Hz that are evident in the ¹⁹F NMR spectrum of this compound. ^[1,6]

The $(para)^{11}$ (i.e., p^{11}) ribbon of p-C₆(CF₃)₂ hexagons in C_2 - C_{74} (CF₃)₁₂ is the longest para-only ribbon in fullerene- $(CF_3)_n$ compounds reported to date (Figure 1 d). There are six X-ray structures of fullerenes with exactly 12 CF₃ groups.^[6] One has a closed loop of alternating p- and m-C₆(CF₃)₂ hexagons, S_6 - $(pm)^6$ (loop)- C_{60} (CF₃)₁₂.^[7] The others have single-ribbon addition patterns: C_2 - p^{11} - C_{74} (CF₃)₁₂, C_2 - p^{11} - C_{78} - $(CF_3)_{12}$ (see below), two isomers of C_1 - p^7mp,p - $C_{70}(CF_3)_{12}$, [17,18]

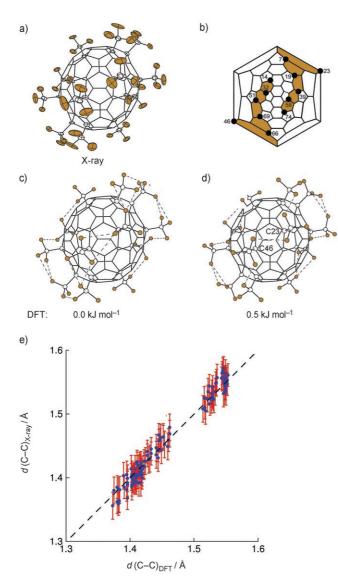
Communications

Figure 1. C_2 - p^{11} -(C_{74} - D_{3h}) (CF₃)₁₂: a) the X-ray structure (50% probability ellipsoids for selected atoms; cocrystallized p-xylene molecules omitted for clarity; F brown), b) the DFT-optimized structure, and c) a Schlegel diagram. The F···F contacts between CF₃ groups are marked in the DFT structure in (b) (DFT distances: 2.676–2.864 Å; X-ray distances: 2.632(2)–2.878(2) Å). d) The F783-C78-C37-C38 torsion angle visible in the fragment of the structure showing half of the p^{11} ribbon is 0.9(1)°. e) The plot shows the correlation between the cage C–C distances in the X-ray structure vs. those in the DFT structure (±3σ error bars).

and C_1 - $p^3(mp)^4$ - $C_{60}(CF_3)_{12}$. (Note that all but the latter compound have one CF_3 group on each of the 12 pentagons.)

We previously reported DFT-optimized structures of C_2 - p^{11} - $(C_{74}$ - $D_{3h})(CF_3)_{12}$ and C_2 - p^{11} - $(C_{78}$ - $D_{3h}(5))(CF_3)_{12}$ obtained using the PBE functional^[20] and the PRIRODA^[21] quantum-chemical package.^[1] A plot shows the agreement between the cage C–C distances of the X-ray and DFT structures of C_2 - p^{11} - $C_{74}(CF_3)_{12}$ (Figure 1 e). (We also optimized the structure at the B3LYP/6-31G* level and found virtually no differences.^[6]) Table 1 lists F···F distances, F₃C···CF₃ distances between hexagon-sharing CF₃ groups, and F-C-C-C torsion angles from the X-ray and the DFT structures. The latter parameter indicates the conformation of each CF₃ group with respect to the fullerene cage. (The torsion angles in Table 1 are the

Table 1: Interatomic distances [Å] and angles [°] for C_2 - p^{11} - $(C_{74}$ - $D_{3h})$ - $(CF_3)_{12}$ from the X-ray structure and DFT-optimized structure.


Parameter	X-ray	DFT	CF ₃ locants
FF distance			
F751F762	2.6325(15)	2.690	4362
F761F772	2.7011(16)	2.741	6247
F771F782	2.8785(14)	2.864	4727
F771F783	2.7595(15)	2.766	4727
F781F792	2.6823(14)	2.745	2711
F782F792	2.8079(14)	2.853	2711
F791F802	2.6223(17)	2.676	112
F801F811	2.639(2)	2.685	25
F ₃ C···CF ₃ distance			
C75C76	3.962(2)	4.013	4362
C76C77	4.213(2)	4.309	6247
C77C78	4.024(2)	4.053	4727
C78C79	3.986(2)	4.042	2711
C79C80	4.313(2)	4.340	112
C80···C81	3.875(2)	3.938	25
F-C-C-C torsion angle			
F751-C75-C43-C60	52.0(1)	52.4	43
F762-C76-C62-C45	24.7(1)	23.4	62
F772-C77-C47-C46	47.1(1)	54.0	47
F782-C78-C27-C28	0.8(1)	0.9	27
F791-C79-C11-C10	56.4(1)	51.5	11
F802-C80-C2-C1	33.6(1)	33.0	2

smallest of the torsion angles that a CF bond makes with the relevant underlying cage hex-hex junction; an angle of 60° is defined as staggered, and an angle of 0° is defined as eclipsed.) The agreement for these structural parameters is also very good, including a significant prediction that the CF₃ group at C78 or C78', the fourth CF₃ group from either end of the ribbon, is eclipsed with a torsion angle of only 1° (see Figure 1 d). The significance is that F-C-C-C torsion angles in fullerene(CF₃)_n structures appear to be correlated with $-\delta$ values in the ¹⁹F NMR spectrum: it was proposed that a $-\delta$ value < 60 indicates that the CF3 group has an eclipsed or nearly eclipsed conformation, [5,9] and the multiplet for the C27 and C37 CF₃ groups has a $-\delta$ value of 55.2.^[6] This correlation and other CF3-addition-pattern principles were used to predict the probable structures of the $C_{2n}(CF_3)_{12}$ compounds from the many possible isomers (2n = 74, 76, 78,80, and 82). [1] Therefore, the X-ray structures of C_2 - C_{74} (CF₃)₁₂ and C_2 - C_{78} (CF₃)₁₂ reported here are the first unambiguous verifications that the correlation between torsion angle and NMR chemical shift, and other addition-pattern principles are probably valid in general. This gives added confidence that the predictions of the cage isomer and addition pattern $C_s - p^9(\text{loop}), p^2 - (C_{76} - T_d(2))(\text{CF}_3)_{12}, C_s - p^{10}(\text{loop}), p - (C_{80} - T_d(2))(\text{CF}_3)_{12}$ $C_{2\nu}(5)$)(CF₃)₁₂, C_2 - p^{11} -(C₈₂- $C_2(5)$)(CF₃)₁₂, and C_2 - p^5 , p^5 -(C₈₂- $C_2(3))(CF_3)_{12}$ are correct.^[1]

Each *-pmp*- ribbon sequence in the $C_{60,70}(CF_3)_n$ structures results in at least one very short pent-hex junction, and these are frequently the shortest cage C–C bonds in the compound. For example, there are three pent-hex junctions in C_1 - $p^3mpmpmp$ - $C_{60}(CF_3)_{10}$ that range from 1.354(1) to 1.358(1) Å. [22] and the two shortest pent-hex junctions in C_1 -

 $p^3mpmpmpmp$ - $C_{60}(CF_3)_{12}$ are 1.347(2) and 1.350(2) Å.^[19] In contrast, the shortest pent-hex junction in all-*para* C_2 - C_{74} - $(CF_3)_{12}$ is 1.400(2) Å, more than 20 σ longer than 1.358 Å.

Neither C_{78} - $D_{3h}(5)^{[12]}$ nor any exohedral derivative thereof had been observed experimentally before the synthesis of this compound. Its X-ray structure, Schlegel diagram, and two DFT structures are shown in Figure 2. A thermal ellipsoid plot and complete numbering are available. The structure of this compound proved to be difficult to refine satisfactorily. Two data sets were obtained for crystals from different

Figure 2. C_2 - p^{11} -(C_{78} - D_{3h} (5))(CF₃)₁₂: a) X-ray structure (50% probability ellipsoids; F brown), b) a Schlegel diagram, and c,d) DFT-optimized structures which differ only in the relative conformations of the CF₃ groups and have an energy difference of only 0.5 kJ mol⁻¹. The intramolecular F···F contacts between hexagon-sharing CF₃ groups are shown in the DFT structures and range from 2.576 to 2.902 Å in the 0.0 kJ mol⁻¹ isomer and from 2.649 to 2.898 Å in the 0.5 kJ mol⁻¹ isomer (the corresponding distances in the X-ray structure range from 2.479(6) to 2.987(6) Å). e) The plot shows the correlation between the cage C–C distance in the X-ray structure vs. that the DFT structure (at 0.0 kJ mol⁻¹; $\pm 3\sigma$ error bars).

crystallization batches, and both data sets yielded the same overall structure for the fullerene molecule. However, standard refinement in each case led to physically unreasonable atomic displacement parameters for some atoms in the fullerene cage and chemically unreasonable electron density in parts of the solvent-occupied regions of the structure. The best residual indices were obtained from a model for which the program SQUEEZE^[24] was used to fill the disordered solvent regions; we report this model for C_2 - p^{11} -(C_{78} - D_{3h} (5))-(CF_3)₁₂ here.

Despite the refinement problems for this structure, there is no doubt that it consists of a C_{78} - $D_{3h}(5)$ cage with 12 CF_3 groups forming a ribbon of 11 p- $C_6(CF_3)_2$ hexagons (Figure 2). Although the estimated standard deviations for individual cage C–C bond lengths are larger than for C_2 - $C_{74}(CF_3)_{12}$, the plot of the X-ray vs. DFT C–C distances in Figure 2e shows a good correlation between experiment and theory.

The p^{11} ribbon is not even approximately C_2 symmetric with respect to the CF₃ conformations. For example, in the X-ray structure the CF₃ groups attached to C23 and C46 have F-C-C-C torsion angles of 15.5° and 51.8° (av 33.7°), and the CF₃ groups attached to C32 and C58 have torsion angles of 28.0° and 17.3° (av 22.7°). The latter pair of CF₃ groups has the smallest average torsion angle for any pair in this compound. Accordingly, none of the ¹⁹F NMR multiplets for C_2 -C₇₈-(CF₃)₁₂ have $-\delta$ values below 60.^[1,6] For comparison, in the structures calculated by DFT (minimum-energy conformational isomer and that 0.5 kJ mol⁻¹ higher in energy (Figures 2 c and 2 d)) the smallest average torsion angle, averaged over both conformational isomers, is 24.8° for the pair of CF₃ groups attached to C32 and C58. The agreement is very good.

Trifluoromethylation has emerged as a powerful tool for the conclusive identification of previously "unknown" fullerene cages, as exemplified here by the structural characterization of C_2 -(C_{74} - D_{3h})(CF₃)₁₂ and C_2 -(C_{78} - D_{3h} (5))(CF₃)₁₂. Attempts to obtain higher-quality crystals of the latter compound and of the other hollow higher fullerenes with 12 CF₃ groups are continuing in our laboratories.

Experimental Section

The two compounds were prepared as previously described from a mixture of sublimed, insoluble higher fullerenes and CF₃I at 500 °C^[1] and were crystallized from p-xylene. X-ray diffraction data were obtained for $C_2\text{-}C_{74}(\text{CF}_3)_{12}$ in Fort Collins using a Bruker Kappa APEX II CCD diffractometer (Mo_{Kα} radiation (λ =0.71073 Å), graphite monochromator)). X-ray diffraction data were obtained for $C_2\text{-}C_{78}(\text{CF}_3)_{12}$ in Berlin using a Bruker XPS CCD diffractometer (Mo_{Kα} radiation (λ =0.71073 Å), graphite monochromator)). In both cases, the semiempirical absorption correction was applied using SADABS. $^{[25]}$ The structures were refined using SHELTXL $^{[26]}$ and, for $C_2\text{-}C_{78}(\text{CF}_3)_{12}$, the program SQUEEZE was employed. $^{[24]}$ DFT calculations were performed as previously described. $^{[1.8,9]}$

Received: December 7, 2006 Published online: April 23, 2007

Keywords: $C_{74} \cdot C_{78} \cdot \text{fullerenes} \cdot \text{trifluoromethyl substituents} \cdot X$ -ray diffraction

Communications

- N. B. Shustova, I. V. Kuvychko, R. D. Bolskar, K. Seppelt, S. H. Strauss, A. A. Popov, O. V. Boltalina, J. Am. Chem. Soc. 2006, 128, 15793-15798.
- [2] H. Nikawa, T. Kikuchi, T. Wakahara, T. Nakahodo, T. Tsuchiya, G. M. Aminur Rahman, T. Akasaka, Y. Maeda, K. Yoza, E. Horn, K. Yamamoto, N. Mizorogi, S. Nagase, *J. Am. Chem. Soc.* 2005, 127, 9684–9685.
- [3] A. Reich, M. Panthofer, H. Modrow, U. Wedig, M. Jansen, *J. Am. Chem. Soc.* **2004**, *126*, 14428–14434.
- [4] M. M. Olmstead, A. de Bettencourt-Dias, J. C. Duchamp, S. Stevenson, D. Marciu, H. C. Dorn, A. L. Balch, *Angew. Chem.* 2001, 113, 1263–1265; *Angew. Chem. Int. Ed.* 2001, 40, 1223–1225.
- [5] I. E. Kareev, I. V. Kuvychko, S. F. Lebedkin, S. M. Miller, O. P. Anderson, K. Seppelt, S. H. Strauss, O. V. Boltalina, J. Am. Chem. Soc. 2005, 127, 8362–8375.
- [6] See the Supporting Information for more details.
- [7] S. I. Troyanov, A. Dimitrov, E. Kemnitz, Angew. Chem. 2006, 118, 2005–2008; Angew. Chem. Int. Ed. 2006, 45, 1971–1974.
- [8] E. I. Dorozhkin, D. V. Ignat'eva, N. B. Tamm, A. A. Goryunkov, P. A. Khavrel, I. N. Ioffe, A. A. Popov, I. V. Kuvychko, A. V. Streletskiy, V. Y. Markov, J. Spandl, S. H. Strauss, O. V. Boltalina, Chem. Eur. J. 2006, 12, 3876–3889.
- [9] I. E. Kareev, S. F. Lebedkin, V. P. Bubnov, E. B. Yagubskii, I. N. Ioffe, P. A. Khavrel, I. V. Kuvychko, S. H. Strauss, O. V. Boltalina, Angew. Chem. 2005, 117, 1880–1883; Angew. Chem. Int. Ed. 2005, 44, 1846–1849.
- [10] C. Yeretzian, J. B. Wiley, K. Holczer, T. Su, S. Nguyen, R. B. Kaner, R. L. Whetten, J. Phys. Chem. 1993, 97, 10097-10101.
- [11] O. V. Boltalina, E. V. Dashkova, L. N. Sidorov, Chem. Phys. Lett. 1996, 256, 253 – 260.
- [12] P. W. Fowler, D. E. Manolopoulous, An Atlas of Fullerenes, Clarendon, Oxford, 1995.
- [13] O. V. Boltalina, D. B. Ponomarev, A. Y. Borchshevskii, L. N. Sidorov, J. Phys. Chem. A 1997, 101, 2574–2577.
- [14] M. D. Diener, J. M. Alford, Nature 1998, 393, 668-671.
- [15] A. A. Goryunkov, V. Y. Markov, I. N. Ioffe, L. N. Sidorov, R. D. Bolskar, M. D. Diener, I. V. Kuvychko, S. H. Strauss, O. V. Boltalina, Angew. Chem. 2004, 116, 1015–1018; Angew. Chem. Int. Ed. 2004, 43, 997–1000.
- [16] Crystals of C_2 - p^{11} - $(C_{74}$ - $D_{3h})(CF_3)_{12}$ -3(p-xylene) were grown in Fort Collins by slow evaporation of a saturated p-xylene solution: $0.19 \times 0.18 \times 0.14$ mm; monoclinic; C2/c; a = 25.7275(13), b = 13.3117(7), c = 23.8412(12) Å; $\beta = 109.791(3)^\circ$; V = 7.682.8(7) Å³ (Z = 4); $\rho_{calcd} = 1.485$ Mg m⁻³; $2\theta_{max} = 33.21^\circ$;

- $-39 < h < 28, -21 < k < 21, -22 < l < 22; \lambda = 0.71073 \text{ Å}; T = 100(2) \text{ K}; no. reflections} = 65\,856; no. independent reflections} = 14\,579 \quad (R(\text{int}) = 0.0400); restraints/-parameters} = 0/662; full-matrix least-squares refinement on <math>F^2$; semiempirical absorption correction from equivalents; $\mu = 0.148 \text{ mm}^{-1}$; final R indices $(I > 2\sigma(I))$ are $R_1 = 0.0503$ and $wR_2 = 0.1215$; largest diff. peak and hole = 0.502 and -0.319 Å^{-3} . CCDC-629531 contains the supplementary crystallographic data for C_2 - p^{11} - C_{74} (CF₃)₁₂. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.
- [17] I. E. Kareev, S. M. Miller, O. P. Anderson, S. H. Strauss, O. V. Boltalina, Acta Crystallogr. Sect. E 2006, 62, o617 – o619.
- [18] I. E. Kareev, S. M. Miller, O. P. Anderson, S. H. Strauss, O. V. Boltalina, Acta Crystallogr. Sect. E 2006, 62, o620 – o622.
- [19] I. E. Kareev, N. B. Shustova, D. V. Peryshkov, S. F. Lebedkin, S. M. Miller, O. P. Anderson, A. A. Popov, O. V. Boltalina, S. H. Strauss, Chem. Commun. 2007, 1650–1652.
- [20] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865 – 3868.
- [21] D. N. Laikov, Chem. Phys. Lett. 1997, 281, 151-156.
- [22] I. E. Kareev, S. F. Lebedkin, S. M. Miller, O. P. Anderson, S. H. Strauss, O. V. Boltalina, Acta Crystallogr. Sect. E 2006, 62, o1498-o1500.
- [23] Crystals of C_2 - p^{11} - $(C_{78}$ - $D_{3h}(5))(CF_3)_{12}$ -n(p-xylene) were grown in Berlin by slow evaporation of a saturated p-xylene solution: $0.5 \times 0.1 \times 0.05$ mm; triclinic; space group $P\bar{1}$ (No. 2); a =14.305(7), b = 15.264(8), c = 20.733(9) Å; $\alpha = 97.23(2)^{\circ}$, $\beta =$ 98.96(2)°, $\gamma = 94.32(1)$ °, $V = 4415.7(4) \text{ Å}^3$, Z = 2; $2\theta_{\text{max}} = 45.9$ °; -15 < h < 15, -16 < k < 16, -22 < l < 22; $\lambda = 0.71073 \text{ Å}$; T = 0.71073 Å153(2) K; no. reflections = 33 961; no. independent reflections = 12151; restraints/-parameters = 0/1.136; full-matrix least-squares refinement on F^2 ; semiempirical absorption correction from equivalents; $\mu = 0.131 \text{ mm}^{-1}$ (transmission min/ max = 0.88/1.00); final R indices $(F_o > 4\sigma(F_o))$ are $R_1 = 0.0734$ and $wR_2 = 0.204$ (R_1 (all data) = 0.100 and wR_2 (all data) = 0.218). CCDC-629280 $(C_2-p^{11}-C_{78}(CF_3)_{12})$ contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
- [24] P. van der Sluis, A. L. Spek, *Acta Crystallogr. Sect. A* **1990**, *46*, 194–201.
- [25] G. M. Sheldrick, SADABS A program for area detector absorption corrections, Bruker AXS, Madison, WI.
- [26] G. M. Sheldrick, SHELTXL (2004), Bruker AXS, Madison, WI.